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Abstract The work focuses on a theoretical approach to
investigating the electric field (EF) dependence of bond-
length alternation, the geometric and electronic structures of
molecular wires used in the design of molecular electronic
devices, the EF dependence of SCF energy, and the spatial
distribution of the frontier orbitals of the molecular wires.
Just as the bond length is an important influence on the
conductance of the molecular wire, the dependence of the
conductance on the chain length was also studied. We have
also investigated how the current–voltage (I-V) character-
istics change with bond length, as the bond length plays an
important role in determining the conductance of molecular
wires.
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Introduction

The development of molecular technology enables us to
manipulate nanosized molecules [1, 2]. Molecules can be

used as active components in electronic devices such as
rectifiers and switches. Since understanding electron trans-
port through single molecules or chains of them is essential
in molecular electronics, much work in this area has been
reported [3–5]; I-V characteristics have been calculated
which demonstrate that bond-length alternation plays an
important role in determining the conductance of molecular
wires. Charge transport across organic molecules as a
function of molecular structure has previously been
investigated with a variety of experimental approaches,
including electrochemical [3], scanning probe [4], donor-
bridge-acceptor [5], and mercury drop electrode [6]
techniques, as well as theoretical calculations [7].

Two particular classes of molecular wires, oligo(phenyl-
ene ethylene) (OPE) and dithiole-benzene (DTB), have
been the focus of our study. The theoretical calculations
presented here highlight an important contribution to
molecular wire conductance: the extent of the bond-length
alternation along the ð-conjugated molecular backbone. To
better understand the physical basis for the measurements,
we calculated the I-V characteristics for the junctions
studied using extended Hückel theory (EHT) and Green’s
functions (GF) under the approximation that the entire
potential drop occurs at the metal–molecule interface. The
details of the theoretical methods used here have been
reported previously [7, 8]. Briefly, the EHT/GF treatment
allows the calculation of the transmission function, which is
then implemented within the Landauer–Buttiker formalism
to calculate the I-V characteristics [8]. While we have
found that junctions with asymmetric metal–molecule
contacts can have unequal voltage drops at the two metal–
molecule interfaces, resulting in asymmetric I-V character-
istics, all of the junctions in this study have symmetric
metal–molecule attachments, and thus the voltage drop is
expected to be split equally at both interfaces.
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Methods

We consider a 1,4-dithiole-benzene (DTB) molecular wire
with a sulfur end group bonded to a gold probe. We use a
double-ζ pluspolarization basis set for the organic and a
single-ζ polarized basis set for the s, p and d channels of
the gold. The exchange-correlation potential is calculated
using the local density approximation (LDA). The present
work sheds new light on the conductance mechanisms of
Au-DTB-Au molecular wires, which are very important in
molecular electronics. Our findings also raise the prospect
of bridging the gap that has persisted in this field between
theory and experiment. The rest of this paper is organized
as follows. We start with a brief description of the density
functional based nonequilibrium Green’s function method,
before we present calculations of the (I-V) spectrum of a
DTB molecule, together with an analysis of the molecular

levels that are important for electron transmission. Finally,
the results will be summarized.

The calculations were performed using the Virtual Nano
Lab package [9], which is based on the combination of
DFT with the NEGF technique [10-14]. VNL is capable of
fully and self-consistently modeling the electrical properties
of a nanoscale device that consists of an atomic-scale
system coupled to two semi-infinite electrodes. Such
nanoscale devices are referred to as “two-probe systems,”
and they are divided into three parts for theoretical
calculations: the left and right electrodes and a central
scattering region. The scattering region actually includes
portions of the semi-infinite electrodes. The simulation
procedure for such a two-probe system is described briefly
below.

First, the electronic structures of the two electrodes are
calculated to get a self-consistent potential. This potential
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will be shifted rigidly relative to each electrode by the
external potential bias, and provides natural real-space
boundary conditions for the Kohn–Sham (K-S) effective
potential of the central scattering region. Then, from the
Green's function of the central scattering region, the
density matrix and thereby the electron density can be
obtained. Once the electron density is known, the DFT
Hamiltonian matrix, which is used to evaluate the Green's
function, can be computed using the above boundary
conditions by means of standard methods using the
following equation:

G ¼ lim d!0 E þ idð ÞS � HS r½ � �ΣL �ΣR

� ��1
: ð1Þ

Here, HS[ρ] is the DFTHamiltonian andΣ L and ΣR are the
self-energies for the left and right electrodes, respectively.
This procedure is iterated until self-consistency is achieved.
Moreover, the current through the atomic-scale system can

be calculated from the corresponding Green's function and
the self-energies using the Landauer–Buttiker formula [13].

IðV Þ ¼ 2e

h

Z þ1

�1
dE fL E � mLð Þ � fR E � mRð Þ½ �T E;Vð Þ

ð2Þ

where μL and μR are the electrochemical potentials of the left
and right electrodes, respectively, i.e.,

mL � mR ¼ eVb ð3Þ
and fR and fL are the corresponding electron distributions of
the two electrodes. T(E,V) is the transmission coefficient at
energy E and bias voltage V, which will be calculated by

T E;Vð Þ ¼ Tr ImΣLðEÞGRðEÞImΣRðEÞGAðEÞ� � ð4Þ

where GR(E) and GA(E) are the retarded and advanced
Green's functions of the central region. Based on the
eigenchannel decomposition of the conductance, this total
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transmission T(E) can be decomposed into the non-mixing
eigenchannels Tn(E) [14] as shown by

TðEÞ ¼ ΣnTnðEÞ ð5Þ

In our DFT calculation, the local-density approximation
(LDA) to the exchange-correlation potential [15] is used.
Only valence electrons are considered in the calculation,
and the wavefunctions are expanded with localized numer-
ical (pseudo)atom orbitals (PAOs) [16]. The atomic cores
are described by norm-conserving pseudopotentials [17].

Results and conclusions

For a molecular wire, conductance decreases as the bond
lengths between the molecules of the wire increase, and
increases exponentially with decreasing bond length, as
shown in Figs. 1–4. Because of the EF applied, the

molecular symmetry changes, although the coplanar con-
formation remains the same for the system we considered.
When the EF increases, the carbon–carbon single bonds
become shorter while the double bonds become longer,
resulting in decreased bond length alternation (BLA).
However, the EF dependence of the bond length is not the
same for all of the bonds (meaning that we must study both
bond and chain length to get a clear picture of the charge
transport in this system). A simple quantitative relationship
between single bond length and external EF was found after
analyzing the data: single bond lengths increase linearly
with EF to the power of R (R is non-integer), where R is the
intermolecular distance in the nanowire and varies from
0.850 to 1.5. The nonlinearity between the length of single
bonds and the square of EF also proves that the interaction
between EF and the induced dipole moment predominates
in the EF-induced molecular evolution. From Figs. 5 and 6,
we found that stretching the individual molecules of the
molecular wire causes the conductance to increase linearly

y = -20.08x2 + 177.8x - 401.3

-50

-40

-30

-20

-10

0

-2 -1 0 1 2

C
u
r
r
e
n
t

% Change in Bond Length within Molecule of Molecular wire

Bond length Decrease Bond length Increase

Linear (Bond length Decrease) Poly. (Bond length Increase)

Fig. 5 Change in current when
the length of a bond within a
molecule in a molecular wire is
varied

y = 11.06x2 - 99.62x + 221.3

0

5

10

15

20

25

-2 -1 0 1 2

C
o
n
d
u
c
t
a
n
c
e

% Change in Bond Length within molecule of Molecular wire

Bond length Increases Bond length decreases

Linear (Bond length Increases) Poly. (Bond length decreases)

Fig. 6 Change in conductance
when the length of a bond
within a molecule in a molecular
wire is varied

3254 J Mol Model (2011) 17:3251–3255



with the percentage increase in bond lengths within the
molecule, and if the molecules are compressed the
conductance decreases according to a second-order poly-
nomial equation. This type of behavior can be explained by
noting that the size of the energy gap between the highest
occupied and lowest unoccupied molecular orbitals (the
HOMO–LUMO gap) is directly related to the extent of
bond-length alternation [18–21], and thus greater bond-
length alternation causes a larger HOMO–LUMO gap,
which affects the conductance and the electrical behavior of
the molecules/molecular wire. We have simulated the I-V
characteristics of two classes of molecules, and the
simulated values for the I-V characteristics are in good
agreement with the experimental values [19, 20]. The
degree of bond-length alternation needs to be considered to
fully understand the variations in charge transport across δ-
conjugated molecular wires.
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